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THE MINIIAX FINITE ELEMENT METHOD

by

Il-Bahng Parkl

and

Walter D. Pilkeyz, M. ASCE

INTRODUCTION

Ir this paper, the minimax method is applied tc boundary value problems
which arise in structural mechanics. This is a weighted residual method in
which the maximum absolute value of a residual is minimized. Like other *
weighted residual methods (7, 13), a trial function is employed which con-
sists of undetermined parameters and basis functions. This trial function
is introduced into governing differential equations, and the maximum absclute
residual among several residuals at discrete peints in the domain is minimized.
This residual minimization criterion is applied to a finite element formula-
tion by using piecewise trial functions defined on each element.

Computational implementation is achieved using linear programming. This
aporoach has been used in the global sense to obtain solutions for differen-
tial equations (3, 13, 21, 28).

Since the linear programming technigue can be applied to solve over-
determined systems of equations (24), more mesh points than the number of
unknown parameters can be used to improve the solution. This is in contrast
to the collocation method. Also, equality constraints representing the
boundary conditions and inter-element continuity conditions can be included
in the formulation. This feature provides more freedom in chonsing a trial
function, which is often the most impcrtant step in the weighted residual method.
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University of Viruinia.
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In the collocation method, the roots of the orthogonal polynomial
are frequently used as collocation points with considerable success (106,
23,26,27). This is referred to as the orthogonal collocation method. Convergence
studies (38,10,12,20) of the orthogonal collocation method show that in most
cases a convergence rate similar to that for the Galerkin and Ritz methods
can be obtained. This procedure will be utilized here in choosing optimal
locations for mesh points.

Since inequality constraints are acceptable in a linear programming
problem, the minimax method can be used for limit analyses and can analyse
structures with off-set supports, which pose a contact problem. When multiple
optimal feasible solutions arise for these types of problems, a parametric

programming method described in Appendix I can be used to choose a specific
optimal solution.

Soon after the upper kound theorem and the lower bound theorem in
plasticity became available (19) and the linear programming technique was
developed by Dantzig, limit analysis was identified as a linear programming
problem, and linear programming algorithms have been used for limit analysis
solutions since then (1,4,5,10,15,17,22,30).

This method appears to be easy to formulate and simple to use. Like
the collocation method, the proposed method does not involve the integra-
tion that is necessary with the other weighted residual methods.

FORMULATION

Elasto-Static Analyses.- For a given governing differential operator
equation of motion

Au = £ (L)

we seek an approximate solution u whose image under differential operator
A approximates the given function f. Let

d4(x) =
i

oo H

a, b, (x) {(2)
; b

in which x is a vector of space variables, ﬁ(i) is a trial function, a,

are unknown parameters, and ¢i(§) are bases of the trial function. Introduce
Eq. (2) into Eq. (1). The residual R(x) becomes

R(x) = Au(x) ~ £(x) =

Ui

a; (a6, (x)) - £(x)

i=1




In the proposed method, the criterion to determine the unknown para-
meters a; is to minimize the maximum absolute residual among several
residuals at discrete points. Let

r = max!R(_.‘Sj)’ i=1,2,. .. . J (4)
in which x, are the locations of mesh points. Then, a linear programming
problem cak be established (24). Find the parameters ay such that Z = ¢

is minimized and the constraints

R(x,) ~r <C
3 1,2,. . . (5)

e
i

~R(x.,) - r <0
24 =
are satisfied.

If the trial function does not satisfy some of the boundary conditions,
the following equality constraints can be included in the above formulation
(Eg. 5).

Buf{x ) = b(x ) =1,2,. .. . P (6)
nlx) = bl °

in which B is a boundary differential expression, b(x) is a given function
defined on the boundary, and Ep are the locations of boundary mesh points.

When the finite element method is used, interelewment continuity
conditions should be satisfied. That is, if p is the number of the highest
order appearing in the governing differential eguation, the approximate
function and up, to (p-1l) derivatives must be continuous across interelement
boundaries (31). In the minimax method, these conditions can be placed
as constraints in the linear programming formulation. However, the high
order inter-element continuity requirement tends to increase the problem
size by increasing the number of nodal variables or by usina additional
constraint equations. This constitutes a drawback of the proposed mini-
max method compared to conventional finite element methods.

If the number of constraints is greater than or equal to the number
of unknown parameters, the existence and uniqueness of a polvnomial of
best approximation is guaranteed (9, 22).

Limit Analysis.- According to the lower bound theorem in plasticity,
if an equilibrium distribution of stress can be found which balances the
anplied load and is everywhere below yield or at yield, the structure
will not collapse or will be just at the point of collapse (19).

To apply the previously formulated minimax method to limit analysis
by using the lower bound theorem, the trial function should satisfy the
equilibrium equations in the domain and boundary conditions on the boundary. The
pattern of load distribution is known. However, the magnitude of the load
factor ) is unknown and is treated as an unknown variable together with
unknown coefficients of a trial function. The yield condition is introduced




at some check points as inequality constraints. The minimization of the
maximum residual produces only an equilibrium state for any value of A.

In other words, for any A which does not violate the yield condition, the
values of unknown coefficients can be determined for the resulting stress
distribution to balance the applied load, A, accordingly. This means that
the linear programming problem has multiple solutions unless

there is another constraint that can specify A. Our purpose is to obtain
a solution that has the maximum value for A\ among these multiple solutions.
Therefore, we have to minimize the maximum residual and, at the same time,
maximize A. Then, the linear programming becomes: €£find the a; such that
2 = r is minimized, ' is maximized, and the constraints

R(x.) - r <0
24 >

j=1,2,. ..J
-R(gc_j) -r<o (7)
Bu{x ) = b(x )} p=12,. . .P
-P -P
Y(x) <k n=12,...N 3

are satisfied. Here Y(in) is the value of the yield function evaluated
at x = x .
= =n

THis problem of multiple objective functions can be handled as a linear
programming problem using the parametric programming method described in Appendix
I. The technique in Appendix I of obtaining a solution with a maximum \ is to
use a new objective function Z = r - €}, where € is a small positive nunber.
The solution gives a lower bound to the limit load.

NUMERICAL EXAMPLES AND RESULTS

Beam on tlastic Foundation.- Consider a beam on an elastic foundation
subject to a wriform load as shown in Fig. 1.

The governing differential equation for engineering beam theory is

EIylv + ksy =g (3)
in which E is Young's modulus of elasticity, I is the moment of inertia
of the beam cross section, ks is the stiffness of the elastic foundation,
and g is the uniform load intensity.

First, an ordinary polynomial is used as a trial function.
I .
) = I a x1t (<)
i=1
Then,
~iv ~
R(x) = EIy  (x) + ksy(x) - q {10)

Let one element apply for the entire beam. Use an equidistant spacing
mesh for the numerical calculations. The results shown in Table 1 are
guite accurate.




An exception occurs for the beam of length L = 2 with a 10th order
polynomial. In the use of a very high order polynomial, the differences
between magnitudes of the coefficients in the constraint equations become
very big and significant numerical error results. This is a drawback in
using an ordinary polynomial. However, this difficulty can be overcome by
refining elements. Aan advantage of using an ordinary polynomial is that
there is no need for matrix inversion to transform the coefficients of the
polynomial to nodal variables as is encountered in the usual finite element
formulations (31).

n Next use Hermitian shape functions as bases of the trial function. Let
H,. ({) denote the nth order Hermitian shape function which is the (2n+l)th
order polynomial (31). In this polynomial, n is the number of derivatives
that the set can interpolate, i is the order of derivatives of H., (§) with
respect to, £, and j =.1 or 2 are theelement node numbers. 1In theé numerical

example, H,. (&) and H?.(S) are used. Then, the trial function for each
1] 1]




element becomes

g T 2 : 2 .

Yo = 5k (Hoj(ﬁ)yj +H () Yogy Hy4 (0 y’c’,ij) (11)
or

y : N 3 (s 3 (¢ 3

Ye 7 ji:l (B (D vy + 0Dy oy + B0y o+ () y ) (1)
respectively.

As shown in Table 2, the numerical results are quite accurate and,
for the same number of unknowns, increasing the number of mesh points
improves the solution. It is also noted that improvement can be
achieved by refining elements.

When thereis a concentrated load, the strxucture can be divided into _
finite elements such that the location of the concentrated load becomes ‘-
a node point. The discontinuity of a variable such as y'" should be »
taken into account in the formulation. This technique is also used in
the analysis of beams with off-set supports.

Torsion of Prismatic Bar. - As an application of the minimax method
to partial differential equations consider the elastic torsion of a
prismatic bar. The governing differential equation (25) is

24 2
38 , 379769 in the domain (13) ,
ax* 3y?
¢ =0 on the boundary {14)

in which ¢ is Prandtl's stress function, G is the shear modulus, and
6 is the angle of twist per unit length of the har.

Since the highest order derivative appearing in the governing
differential equation is two, the requirement of interelement continuity
is the continuity of 9, Oroer ¢, ,and 9, v Therefore, the following trial
function can be used for tne ractangulat element shown in Fiq. 2.

8, (/1) =

i

[ a2 BN
[ o IS

1l 1 1 1
H..(£) H]. . RO (E) HSL O ..

1 1 1 1
+ Hoj(é) Hy 4 (n) ‘b’nij + Hy; (8) Hlj(n) ¢,€,]ij]

The residual in each element is

82 2
R(:n)sl —ig+-];35e + 2GH 15
e (50 a2 5E b2 InZ (15)




As a numerical example, a prismatic bar of a square cross section
will be treated by the minimax method. Let H be the height and W the
width of the cross section. The analytic solution for the torsicn of a
rectangular bar as taken from Ref. 25 is

T = KGEW
max

3
Mt = chew H

in which T is shear stress, M_ is the torque, and K and Kl are numerical
factors depending on the ratio H/W.

Due to the symmetry, only one quadran: of the cross section needs
to be considered. ~results are shown in Table 3. For the same number of
mesh points, the selection of mesh points at the Gaussian points gives
better results than the use of mesh points at a/4 and 3a/4. It is also
noted that the solution for K with 3x3 Gaussian points is better than
with 2x2 Gaussian points. However, 2x2 Gaussian points plus a center
mesh point gives poorer results than simple 2x2 Gaussian mesh points.
This indicates that convergence with respect to increasing mesh points
is not monotonic. The results also indicate that increasing the number
of elements improves the results even with a modicore choice of mesh
points.

Plane Stress Analysis.- For a plane (x,y) elasticity problem the
equilibrium equation is

3o . goxv -
ax 3y -
(16)
dc o
_\XX + __XY = 0
oy Ix

if body forces and thermal effects are neglected. 1In terms of displacerent
components u and v, this becomes

1 l+v 1
T Yrax T T Vixy T3 Vigy =0
(17}
1 v, 1+V u, + 1 =0

1-v 'yy * 2(1-v) xy 2 Vixx

The solution to Eqs (17) subject to appropriate boundary conditions consti-
tutes the solution of the problem of elasticity. Since the highest order

of derivatives appearing in the governing differential equations is two in
Eq. (18), u, Uiy s u.y,and u,xy should be continuous between elements. The
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same applies to the displacement component v. Thus, a conforming alement
using the Hermitian shape functions H}j as basis functions is used.

3 )
~ - u 1 1
u = T T [H_ (5 H__(n) u,, + H ,(:) H..u,
e i=1 j=1 01 01 1 03 'ciy
) S 1 1 1.
N (N L.t . (5 AT .
+ Ho, ) Hlj(') Y, g Hll(ﬁ) Hlj( ) u,gqul
(13)
2 2 1 1 1 1
it © < - -
v = - - [H.(-)H.(ﬂ) V..+H.()H.(n) Ve -
e i=1 §=1 01 03 i 1li 03 2
) 1 LA |
+ Hy i (3) Hlj(“’ Vinig * H) (9 Hlj(n) "snij] #
in which @, Oe are trial functions for u and v, respectively, in an
element.
As an example of a plane stress problem, consider a plate subject

to simple in-plane forces such as pure tension, pure bending, and pure
shear. For the pure tension problem shown in Fig. 3, the approximate
boundary conditions are

Ul = u2 = ‘_13 = U,yl = u,yz = U,-y3 = Ury4 = "]7

TVL TV TV T Ve T V0 T Vi3 T Vigg TV =0
Jxx7 = cxx8 = 0xx9 =10
oyy3 = cyy6 = Oxy6 = nyB = oxy9 =0

in which u, is the value of u at node 1, u, is the value of ?3 at

node 1, S is the value of O, at node 7,%&tc. e

The results obtained with the minimax method for the simple in-plane for?es
are exact and this formulation passes the so-called patch test. According
to this test, in order for a solution to converge to the c?rfect one by
refining elements, a patch of elements subjected to.a specific nodal dis-
placement corresponding to a state of constant strain should produce the
constant strain state throughout the elements (6).

Limit Analysis of a Fixed-fixed Beam.- Suppose the limit load is sought
for a orismatic fixed-fixed beam subject to a uniform load as shown %n
Fig. 4. Due to the symmetry, only half of the beam needs to be considered.




9
let
2 3 3 3 3
y(3) = I Doy, (& 3 I L) v
y(3) 2 [HOi(., Yo o+ Hp (9 Yo Hy, () Y orgy + ”31“’) -’,:,S-,l] (19,
For a beam problem, the yield condition is expressed as
M | <M (20)
n' = p
in which M is the moment at x = X, and M is the plastic yield moment
of the beam which is obtained when the whgle section of the beam becomes
plastic (2), as shown in case C in Fig. 5. If the vield condition is
checked at £ =0, £ =1
EI
M = - ; - = 1
Xn Fylgm n 1, 2 (21)
Cheoose the uniformly distributed load g = 1. Then, the residual is
. a*y A ¢
> —ta - 22
R(%) = ate BT (22)
The linear nrogramming rroblem becomes: Find Vi Fezge Y'gri' Y’E'fi such
that 2 = r is minimized, \1 is maxmimized, and the constraiﬁts h
R(£) - r < O
)
-R(gj) -r < 0
(23
+ EI
- = <
EI
- < M
l 7z Y 552‘ - "p

are satisfied. Using . = 0.2, 0.4, 0.6, 0.8, and 1, the following results
were obtained ]

Ml = ~12 1b-in (1356,36 N-mm), Vl = 7.2 1b (32.04 N), Iy = 0.004 in (00,1016 mmi

M, = 6 1b-in (678.18 N-mm), X\, = 1.44 1b (6.408 N)

2 1

Here, Mi and Vi are the moments and shear force at node i. Xl = 1.44 is the




lower bound on the limit load factor and causes the plastic moment at
I = 0.

If the material is elastic perfectly plastic, M, remains the same
as M . Upon a further increase in load, the elastic part of the beam
willpsupport the increase in load. Therefore, by solving the following
linear programming problem, the next largest load which causes further
vyielding can be determined: Find v., V,c., ¥ rz.. @and y, -.-. such that
> . C .. - . i >t P £EY . r S804
Z = r is minimized, k, is maximized, and the cdnstraints

R(3.) = r <0
3 =

j —_

F1 (24)
- Yen) %

EI

"z Yeg T

are satisfied. The numerical results for this problem were found to be

&4
|

1 = -12 1b-in (-1356.36 N-mm) Vl = 9.6 1b (42.72 N}, y, = 0.11 in. (2.79

12 1b-in (1356.36 N-mm) K2 = 1.92 1b (8.544 N)

.,_
=
[}

As jndicated in Fig. 4(d), the collapse mechanism has been formed and
A\, = 1.92 is the exact load factor for the collapse load.

CONCLUSION

It is shown that the minimax weighted residual method can be used for
obtaining finite element solutions. The method appears to be relatively
easy to set up and gives satisfactory results for the example problems.
This method is very attractive, particularly for ordinary differential
equations and low order partial differential equations. It can be used to
solve problems with inequality constraints.

Unlike the collocation method, the solution can be improved by using
more mesh points than the number of unknown coefficients in the given trial
function. Also, the solution can be improved by refining elements. The
Gaussian points are optimal mesh points for the proposed minimax methed.
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APPENDIN I - PARAMETRIC PROGRAMMING METHCD 7TC CHOOSE A PARTICULAR SOLUTION
FROM MULTIPLE SCLUTICNS

. g r T, .
Consider the problem, find “x} such that 2= 'c¢} {x; are minimized
and the constraints

(A]{x} = {b}
{xt >0

are satisfied. Let some perturbation be given to ¢

.+ oy
P L O R 2.

T
in which € is small positive number. MNow, assume that {xg} is one of the
multiple solutions {xB}. Then, 2% becomes (14)

If there are ¢ multiple solutions

1,7, 1 T o T
{CB} {XB} = {c2} {Xg} = . ... .= \Cé} {x51 = . ... =v Ix

w o

. . PO 4
If we can have one of X5 remain optimal, minimizing Z means also waximizing

E{fB}T {XB} and this is the same as

* P .
Maximize 2 = <if} {x}
such that [A)ix) = (b}

{x} ¢ {xB}

: +
Therefore, by minimizing 2 = {c }T{x} such that (al{x} = {p}, {x} >0
and by properly choosing £, we can obtain a particular solgtion from the
multiple solutions which satisfy min 2 = {c}"{x} and max z* = e{f}T{x} such

that [A]{x} = {b}, {x}é{xB}, € can be chosen as follows:

We wish to maintain one of the {xB} as the optimal basic solution for the
new problem




- —— = -

+,
minimize z* = {c }T{x}

such that [A]l{x} = (b}

ix} >0

+ T +,
Cenote by zj - c; the value at zj - cj when {c}  is replaced by {c ;T,

then the critical value of € is such that any increase in £ would make one

+ + cas
oxr more zj - cj positive

+ + T . T T
z. ~c. = ({e }" - el VMy.} - c, -€f, =z, =c. - c({£, 17 {v.} - £)
J B MRAE 3 i3 T3 g/ Y50 TR

.

-

et

in which fp is the row vector that contains the components of £ corresponding
. T .
to the comgonents of c in Cge Iif {fB} {yj} - fj are nonnegative, then we

can make € arbitrarily large without destroying optimality. However, if

one or more {EB}T{yj} - fj are negative and € is larqge enough, the corresponding
+ + : L C
zj - c, will become positive. Thus, the critical value of €. > 0 is given by

z, - .
€ = min b J , if {f }T{y.} < 0
c (£ Y 0y 1= €. BT 7l
B J 3

for one or more j

oY

. T .
= @® - >
Ec , if {fB} {yj} fi 0 , for all j

m
. PR + +4° e
Therefore, by choosing € < ¢ ,minimizing 2" = {c'} {x} also minimizes
y gese,

2 = {c)T{x} and, at the same time, maximizes z* = e(f}T {x}.

3.
1
N
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L




APPENDIX II. - REFERENCES

1 Anderhaggen, E., and Knopfel, H., "Finite Element Limit Analysis
using Linear Programming,"” International Journal of Solids and Structures,
Vol. 8, 1972, pp. 1413-1431.

2 Beedle, L.S., Plastic Design of Steel Frames, John Wiley and Sons,
Inc., New York, New York, 1958,

3 Cannon, J.R., "The Numerical Solution of the Dirichlet Problem for
Laplace's Equation by Linear Programming," Journal of Society for Industrial
and Applied Mathematics, Vol. 12, No. 1, March 1964, pp. 233-237.

4 Charnes, A., and Greenberg, H.J., "Plastic Ccllapse anéd Linear
Prograrming,” Summer meeting American Mathematical Society, 1951.

5 Charnes, A., lLemke, C.E., and Zienkiewicz, 0.C., "Virtual Work,
Linear Programming and Plastic Limit Analysis,"” Proceedings of the Roval
Society, A 251, 1959, pp. 110-116.

6 Cook, R.D., Concept and Applications of Finite Element Aanalysis,
John Wiley and Sons, Iac., New York, New York, 1974.

7 Crandall, S.H., Engineering Analysis, McGraw-'1ill, New York, llew
York, 1956.

8 DeBoor, C., and Swartz, B., "Coliocation at Gaussian Points,"
SIAM Journal on Numerical analysis, Vol. 10, No. 4, Sept., 1973, pp. £82-
6C6. ’

3 Dem'yonov V.F., and Malozemov, V.N., Introduction tc Minimax ,
John Wiley and Sons, Inc. New York, New York, 1974,

10 Dorn, W.S., and Greenberg, H.J., "Linear Programming and Plastic
Analysis of Structures," Journal of Applied Mathematics, Vol. 15, 1967,
pp. 155-167.

11 Douglas, J., "A Superconvergence Result for the Approximate Solution
of the Heat Equation by Collocation Method," The Mathematical Foundation «of%
the Finite Element Method with Application to Partial Differential Equations,
Aziz ed., Academic Press, New York, New York, 1972, pp. 475-490.

12 Douglas, J., and Dupont, T., "A Finite Element Collocation Method
for Quasilinear Parabolic Equations," Mathematics of Computation, Vol. 27,
No. 121, Jan., 1973, pp. 17-28.

13 Finlayson, B.A., The Method of Weighted Residuals and Variaticnal
Principles, Academic Press, New York, New York, 1972.

14 Hadley, G., linear Programming, Addison-Wesley, Reading, Mass., 1962.

15 Koopman, D.C.A., and Lance, R.H., "On Linear Programming and Plastic
Limit Analysis," Journal of the Mechanics and Physics of Solids, Vol. 13,
1965, pp. 77-87.

16 Lanczos, C., "Trigonometric Interpolation of Empirical and Analytical
Functions,” Journal of Mathematical Physics, Vol. 17, 1938, pp. 123-199.

17 Livesley, R.K., "A Review of Limit Load Analysis and Associated
Design Techniques,” World Congress on Finite Element Methods in Structural
Mechanics, Vol. 1, 1975, pp. 1-12.

18 Mangasarian, 0.L., "Numerical Solution of the First Biharmonic
Problem by Linear Programming," International Journal of Engineering Science,
Vol. 1, 1963, pp. 2321-240.




1% Martin, J.B., Plasticity, MIT Press, Cambridge, Mass., 1975.

20 prenter, P.M., and Pussell, R.D., "Orthogonal Collocation for
Elliptical Partial Differential Equations," SIAM Journal on Numerical
Analvsis, Vol. 13, No. 6, Dec., 1976, pp. 923-939,

21 Rabinowitz, P., "Applications of Linear Programming to Numerical
Analysis," SIAM Review, Vol. 10, No. 2, April, 1968, pp. 121-159.

22 Rice, J.R., The Approximation of Functions, Addison-Wesley,
Reading, Mass., 1964.
23 shalev, A., Baruch, M., and Nissim, E., "Buckling Analysis of
Elastically Constrained Conical Shells under Hydrostatic Pressure by the
Collocation Method," American Institute of RAeronautics and Astronautics,

Paper No. 73-364.

24 stiefel, E., "Notes on Jordan Elimination, Linear Programming and
Tchebycheff Approximation,” Numerische Mathematik, Vol. 12, pp. 1-17.

25 Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity,
McGraw-Hill, New York, New York, 1970.

26 villadson, J.V., and Stewart, W.E., "Solution of Boundary Value
Problems by Orthogonal Collocation," Chemical Engineering Science, Vol. 22,
1967, pp. 1483-1501.

27 wright, K., "Chebyshev Collocation Methods fcr Ordinary Differential
Equations," The Computer Journal, Vol. 6, 1954, pp. 358-365.

28 vYoung, J.D., "Linear Program Approach to Linear Differential Problems,”
International Journal of Engineering Science, Vol. 2, pp. 413-416.

29 Zavelani-Rossi, A., "A New Linear Programming Approach to Limit
Analysis,"” Variational Methodsin Engineering, Southampton University Press,
Southampton, England, 1972,

30 Zzavelani, A., "A Compact Linear Prgramming Procedure for Optimal
Design in Plane Stress," Journal of Structural Mechanics, Vol. 2, 1973, pp.
301~-324.

31 Z2ienkiewicz, O0.C., The Finite Element Method in Engineering Science,
3rd. ed., McGraw-Hill, London, England, 1977,




APPENDIX IXIYX. - NOTATION

The following symbols are used in this paper:

1}

differential operator;

constraint matrix:

unknown coefficients;

columns of [A] matrix;

boundary differential expression:

basis matrix:

row price vector;

row vector of the prices of basis variables:
Young's modulus of elasticity:;
prescribed function;

some specific, but ;rbitrary row vector;
shear modulus:

nth order Hermitian shape function;
moment of inertia of cross section;
stiffness of elastic foundation;

length of a beam;

length of a beam element;

moment at node i;

plastic moment of a beam;

torgue;

uniform load intensity:;

iiliininac I e i




v

=

[¢]

([}

residual;

maximum of the absolute value of residual ;
exact solution;

approximate solution (trial function)
shear at node i ;

vector of space variables;

yield function;

value of y at node j;

[B-l] {aj L

value of %X at node j;

Jn

objective function;

secondary objective function;

{cB}T {yj}:

basis of a trial function;

Prandtl's stress function;

value of  at node (i,j) (Refer to Fig. 3):
value of %% at node (i,3j);

load factor;

Poisson's ratio; and

angle of twist per unit length.
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TABLE 3 Results for the Torsion of a Prismatic Bar with
Square Cross Section

location of |No. of|¥No. of K Kl Remarks
mesh points |un- mesh
knowns|po ints
(1) (2) (3) (4) (5) (6)

(a) WwWith one element for a gquadrant

. .
S50 U I 4 | 0.651 | 0.1389
T
—

4 4 0.670 | 0.1432 | 2%2 CGaussian

+ o+ points

N + o+
N +
Sy PN 4 S ] 0.636 | 0.1356
+ + 2x2 Gaussian
* 4 5 0.648 | 0.1333 [ points plus
+ + : center
+ + +
+ o+ 4 9 0.674 | 0.1454 | 3x3 Caussian
+ + + points




TABLE 3 Continued

N L}
(b) With 4 elements for a quadrant

A
va |k S+ 4 16 16 0.672 ) 0.1389

16 20 0.669 0.1391

+

4
T 4|+ +
+ |+ 0}

.

4

16 16 0.675 0.1408 2xg Gaussian
points

+ SF A
L 4f¢

L3l ¢
ENEE ] U )

(e¢) Exact (32)

0.675 { 0.1406

Note: a =5 in (127 mm)
+ represents a mesh point

——




~a = 1,000,000 1b/ft

y — z 2

' EEREERERRERENN EI = 20,833,300 lb-ft

1 — R .t F 2

© k= 2,073600 1b/£c® @ . £ = x/2
y,n ‘y.n ysn .
L
(a) Beam with two elements (b) Beam element
(L fr. = 0.305 m; 1 1b/fc = 14.59 N/m; 1 1b/ft> = 47.837 N/m%; 1 1b-ft2 = 0.414 N-md)

Fig. 1 Beam on Elastic Foundation




g = x/a
1,2) (2,2) n=y/b
'.D
{ (1,1) (2,1) o

Fig. 2 Rectangular Element
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(1L in = 25.4 mm; 1 1b = 4.45 N; 1 1b/in = 0.175 N/mm)

Fig. 3 Pure Tension




L = 10 in
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EI = 10° 1b-in?

(a) Original structure
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1
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(b) Structure for the first analysis
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PLAD .\1p =12 1b-in

(d) Collapse mechanism

(1 in = 25.4 mm; 1 lb—in2 = 2870.692 N-mmz; 1 1b-in = 113.03 N-mm)

Fig. - Limit Analysis of a Fixed-fixed Beam




(a) Stress-strain relationship for extreme fiber
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(b) Stress distribution

Fig. 5 Plastic Bending







